Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Sci Rep ; 9(1): 11623, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406173

RESUMO

Telomere shortening has been associated with multiple age-related diseases such as cardiovascular disease, diabetes, and dementia. However, the biological mechanisms responsible for these associations remain largely unknown. In order to gain insight into the metabolic processes driving the association of leukocyte telomere length (LTL) with age-related diseases, we investigated the association between LTL and serum metabolite levels in 7,853 individuals from seven independent cohorts. LTL was determined by quantitative polymerase chain reaction and the levels of 131 serum metabolites were measured with mass spectrometry in biological samples from the same blood draw. With partial correlation analysis, we identified six metabolites that were significantly associated with LTL after adjustment for multiple testing: lysophosphatidylcholine acyl C17:0 (lysoPC a C17:0, p-value = 7.1 × 10-6), methionine (p-value = 9.2 × 10-5), tyrosine (p-value = 2.1 × 10-4), phosphatidylcholine diacyl C32:1 (PC aa C32:1, p-value = 2.4 × 10-4), hydroxypropionylcarnitine (C3-OH, p-value = 2.6 × 10-4), and phosphatidylcholine acyl-alkyl C38:4 (PC ae C38:4, p-value = 9.0 × 10-4). Pathway analysis showed that the three phosphatidylcholines and methionine are involved in homocysteine metabolism and we found supporting evidence for an association of lipid metabolism with LTL. In conclusion, we found longer LTL associated with higher levels of lysoPC a C17:0 and PC ae C38:4, and with lower levels of methionine, tyrosine, PC aa C32:1, and C3-OH. These metabolites have been implicated in inflammation, oxidative stress, homocysteine metabolism, and in cardiovascular disease and diabetes, two major drivers of morbidity and mortality.


Assuntos
Homocisteína/metabolismo , Leucócitos/ultraestrutura , Metabolismo dos Lipídeos , Metabolômica/métodos , Telômero , Adulto , Idoso , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Encurtamento do Telômero
2.
Nat Commun ; 6: 7208, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-26068415

RESUMO

Metabolites are small molecules involved in cellular metabolism, which can be detected in biological samples using metabolomic techniques. Here we present the results of genome-wide association and meta-analyses for variation in the blood serum levels of 129 metabolites as measured by the Biocrates metabolomic platform. In a discovery sample of 7,478 individuals of European descent, we find 4,068 genome- and metabolome-wide significant (Z-test, P < 1.09 × 10(-9)) associations between single-nucleotide polymorphisms (SNPs) and metabolites, involving 59 independent SNPs and 85 metabolites. Five of the fifty-nine independent SNPs are new for serum metabolite levels, and were followed-up for replication in an independent sample (N = 1,182). The novel SNPs are located in or near genes encoding metabolite transporter proteins or enzymes (SLC22A16, ARG1, AGPS and ACSL1) that have demonstrated biomedical or pharmaceutical importance. The further characterization of genetic influences on metabolic phenotypes is important for progress in biological and medical research.


Assuntos
Sangue/metabolismo , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Humanos
3.
PLoS Genet ; 11(1): e1004835, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25569235

RESUMO

Metabolite quantitative traits carry great promise for epidemiological studies, and their genetic background has been addressed using Genome-Wide Association Studies (GWAS). Thus far, the role of less common variants has not been exhaustively studied. Here, we set out a GWAS for metabolite quantitative traits in serum, followed by exome sequence analysis to zoom in on putative causal variants in the associated genes. 1H Nuclear Magnetic Resonance (1H-NMR) spectroscopy experiments yielded successful quantification of 42 unique metabolites in 2,482 individuals from The Erasmus Rucphen Family (ERF) study. Heritability of metabolites were estimated by SOLAR. GWAS was performed by linear mixed models, using HapMap imputations. Based on physical vicinity and pathway analyses, candidate genes were screened for coding region variation using exome sequence data. Heritability estimates for metabolites ranged between 10% and 52%. GWAS replicated three known loci in the metabolome wide significance: CPS1 with glycine (P-value  = 1.27×10-32), PRODH with proline (P-value  = 1.11×10-19), SLC16A9 with carnitine level (P-value  = 4.81×10-14) and uncovered a novel association between DMGDH and dimethyl-glycine (P-value  = 1.65×10-19) level. In addition, we found three novel, suggestively significant loci: TNP1 with pyruvate (P-value  = 1.26×10-8), KCNJ16 with 3-hydroxybutyrate (P-value  = 1.65×10-8) and 2p12 locus with valine (P-value  = 3.49×10-8). Exome sequence analysis identified potentially causal coding and regulatory variants located in the genes CPS1, KCNJ2 and PRODH, and revealed allelic heterogeneity for CPS1 and PRODH. Combined GWAS and exome analyses of metabolites detected by high-resolution 1H-NMR is a robust approach to uncover metabolite quantitative trait loci (mQTL), and the likely causative variants in these loci. It is anticipated that insight in the genetics of intermediate phenotypes will provide additional insight into the genetics of complex traits.


Assuntos
Exoma/genética , Estudo de Associação Genômica Ampla , Metaboloma/genética , Locos de Características Quantitativas/genética , Feminino , Predisposição Genética para Doença , Glicina/sangue , Humanos , Erros Inatos do Metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único , Ácido Pirúvico/sangue , Valina/sangue
4.
PLoS One ; 9(11): e112835, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25415563

RESUMO

UNLABELLED: Very low calorie diets (VLCD) with and without exercise programs lead to major metabolic improvements in obese type 2 diabetes patients. The mechanisms underlying these improvements have so far not been elucidated fully. To further investigate the mechanisms of a VLCD with or without exercise and to uncover possible biomarkers associated with these interventions, blood samples were collected from 27 obese type 2 diabetes patients before and after a 16-week VLCD (Modifast ∼ 450 kcal/day). Thirteen of these patients followed an exercise program in addition to the VCLD. Plasma was obtained from 27 lean and 27 obese controls as well. Proteomic analysis was performed using mass spectrometry (MS) and targeted multiple reaction monitoring (MRM) and a large scale isobaric tags for relative and absolute quantitation (iTRAQ) approach. After the 16-week VLCD, there was a significant decrease in body weight and HbA1c in all patients, without differences between the two intervention groups. Targeted MRM analysis revealed differences in several proteins, which could be divided in diabetes-associated (fibrinogen, transthyretin), obesity-associated (complement C3), and diet-associated markers (apolipoproteins, especially apolipoprotein A-IV). To further investigate the effects of exercise, large scale iTRAQ analysis was performed. However, no proteins were found showing an exercise effect. Thus, in this study, specific proteins were found to be differentially expressed in type 2 diabetes patients versus controls and before and after a VLCD. These proteins are potential disease state and intervention specific biomarkers. TRIAL REGISTRATION: Controlled-Trials.com ISRCTN76920690.


Assuntos
Biomarcadores/metabolismo , Restrição Calórica , Diabetes Mellitus Tipo 2/metabolismo , Proteômica , Feminino , Hemoglobinas Glicadas/metabolismo , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade
5.
Diabetes Care ; 37(12): 3150-6, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25315204

RESUMO

OBJECTIVE: Obesity and type 2 diabetes mellitus (T2DM) have been associated with increased levels of circulating branched-chain amino acids (BCAAs) that may be involved in the pathogenesis of insulin resistance. However, weight loss has not been consistently associated with the reduction of BCAA levels. RESEARCH DESIGN AND METHODS: We included 30 obese normal glucose-tolerant (NGT) subjects, 32 obese subjects with T2DM, and 12 lean female subjects. Obese subjects underwent either a restrictive procedure (gastric banding [GB], a very low-calorie diet [VLCD]), or a restrictive/bypass procedure (Roux-en-Y gastric bypass [RYGB] surgery). Fasting blood samples were taken for the determination of amine group containing metabolites 4 weeks before, as well as 3 weeks and 3 months after the intervention. RESULTS: BCAA levels were higher in T2DM subjects, but not in NGT subjects, compared with lean subjects. Principal component (PC) analysis revealed a concise PC consisting of all BCAAs, which showed a correlation with measures of insulin sensitivity and glucose tolerance. Only after the RYGB procedure, and at both 3 weeks and 3 months, were circulating BCAA levels reduced. CONCLUSIONS: Our data confirm an association between deregulation of BCAA metabolism in plasma and insulin resistance and glucose intolerance. Three weeks after undergoing RYGB surgery, a significant decrease in BCAAs in both NGT as well as T2DM subjects was observed. After 3 months, despite inducing significant weight loss, neither GB nor VLCD induced a reduction in BCAA levels. Our results indicate that the bypass procedure of RYGB surgery, independent of weight loss or the presence of T2DM, reduces BCAA levels in obese subjects.


Assuntos
Aminoácidos de Cadeia Ramificada/sangue , Restrição Calórica , Diabetes Mellitus Tipo 2/complicações , Derivação Gástrica , Obesidade/cirurgia , Redução de Peso/fisiologia , Adulto , Regulação para Baixo , Feminino , Intolerância à Glucose/sangue , Intolerância à Glucose/complicações , Intolerância à Glucose/dietoterapia , Intolerância à Glucose/cirurgia , Humanos , Resistência à Insulina , Pessoa de Meia-Idade , Obesidade/complicações , Obesidade/dietoterapia
6.
J Lipid Res ; 55(12): 2532-40, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25320342

RESUMO

Prolonged niacin treatment elicits beneficial effects on the plasma lipid and lipoprotein profile that is associated with a protective CVD risk profile. Acute niacin treatment inhibits nonesterified fatty acid release from adipocytes and stimulates prostaglandin release from skin Langerhans cells, but the acute effects diminish upon prolonged treatment, while the beneficial effects remain. To gain insight in the prolonged effects of niacin on lipid metabolism in adipocytes, we used a mouse model with a human-like lipoprotein metabolism and drug response [female APOE*3-Leiden.CETP (apoE3 Leiden cholesteryl ester transfer protein) mice] treated with and without niacin for 15 weeks. The gene expression profile of gonadal white adipose tissue (gWAT) from niacin-treated mice showed an upregulation of the "biosynthesis of unsaturated fatty acids" pathway, which was corroborated by quantitative PCR and analysis of the FA ratios in gWAT. Also, adipocytes from niacin-treated mice secreted more of the PUFA DHA ex vivo. This resulted in an increased DHA/arachidonic acid (AA) ratio in the adipocyte FA secretion profile and in plasma of niacin-treated mice. Interestingly, the DHA metabolite 19,20-dihydroxy docosapentaenoic acid (19,20-diHDPA) was increased in plasma of niacin-treated mice. Both an increased DHA/AA ratio and increased 19,20-diHDPA are indicative for an anti-inflammatory profile and may indirectly contribute to the atheroprotective lipid and lipoprotein profile associated with prolonged niacin treatment.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Ácidos Graxos Ômega-3/sangue , Hiperlipidemias/tratamento farmacológico , Hipolipemiantes/uso terapêutico , Gordura Intra-Abdominal/efeitos dos fármacos , Niacina/uso terapêutico , Oxilipinas/sangue , Algoritmos , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Ácido Araquidônico/sangue , Ácido Araquidônico/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/genética , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Dieta Ocidental/efeitos adversos , Ácidos Docosa-Hexaenoicos/sangue , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados/sangue , Ácidos Graxos Insaturados/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Hidroxilação , Hiperlipidemias/sangue , Hiperlipidemias/imunologia , Hiperlipidemias/metabolismo , Hipolipemiantes/farmacologia , Gordura Intra-Abdominal/imunologia , Gordura Intra-Abdominal/metabolismo , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/metabolismo , Camundongos Transgênicos , Niacina/farmacologia , Oxilipinas/metabolismo , Fatores de Tempo
7.
J Biomed Semantics ; 5(1): 41, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25276335

RESUMO

BACKGROUND: One of the main challenges for biomedical research lies in the computer-assisted integrative study of large and increasingly complex combinations of data in order to understand molecular mechanisms. The preservation of the materials and methods of such computational experiments with clear annotations is essential for understanding an experiment, and this is increasingly recognized in the bioinformatics community. Our assumption is that offering means of digital, structured aggregation and annotation of the objects of an experiment will provide necessary meta-data for a scientist to understand and recreate the results of an experiment. To support this we explored a model for the semantic description of a workflow-centric Research Object (RO), where an RO is defined as a resource that aggregates other resources, e.g., datasets, software, spreadsheets, text, etc. We applied this model to a case study where we analysed human metabolite variation by workflows. RESULTS: We present the application of the workflow-centric RO model for our bioinformatics case study. Three workflows were produced following recently defined Best Practices for workflow design. By modelling the experiment as an RO, we were able to automatically query the experiment and answer questions such as "which particular data was input to a particular workflow to test a particular hypothesis?", and "which particular conclusions were drawn from a particular workflow?". CONCLUSIONS: Applying a workflow-centric RO model to aggregate and annotate the resources used in a bioinformatics experiment, allowed us to retrieve the conclusions of the experiment in the context of the driving hypothesis, the executed workflows and their input data. The RO model is an extendable reference model that can be used by other systems as well. AVAILABILITY: The Research Object is available at http://www.myexperiment.org/packs/428 The Wf4Ever Research Object Model is available at http://wf4ever.github.io/ro.

8.
Diabetologia ; 57(11): 2384-92, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25099943

RESUMO

AIMS/HYPOTHESIS: Not all obese individuals develop type 2 diabetes. Why some obese individuals retain normal glucose tolerance (NGT) is not well understood. We hypothesise that the biochemical mechanisms that underlie the function of adipose tissue can help explain the difference between obese individuals with NGT and those with type 2 diabetes. METHODS: RNA sequencing was used to analyse the transcriptome of samples extracted from visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) of obese women with NGT or type 2 diabetes who were undergoing bariatric surgery. The gene expression data was analysed by bioinformatic visualisation and statistical analyses techniques. RESULTS: A network-based approach to distinguish obese individuals with NGT from obese individuals with type 2 diabetes identified acetyl-CoA metabolic network downregulation as an important feature in the pathophysiology of type 2 diabetes in obese individuals. In general, genes within two reaction steps of acetyl-CoA were found to be downregulated in the VAT and SAT of individuals with type 2 diabetes. Upon weight loss and amelioration of metabolic abnormalities three months following bariatric surgery, the expression level of these genes recovered to levels seen in individuals with NGT. We report four novel genes associated with type 2 diabetes and recovery upon weight loss: ACAT1 (encoding acetyl-CoA acetyltransferase 1), ACACA (encoding acetyl-CoA carboxylase α), ALDH6A1 (encoding aldehyde dehydrogenase 6 family, member A1) and MTHFD1 (encoding methylenetetrahydrofolate dehydrogenase). CONCLUSIONS/INTERPRETATION: Downregulation of the acetyl-CoA network in VAT and SAT is an important feature in the pathophysiology of type 2 diabetes in obese individuals. ACAT1, ACACA, ALDH6A1 and MTHFD1 represent novel biomarkers in adipose tissue associated with type 2 diabetes in obese individuals.


Assuntos
Acetilcoenzima A/metabolismo , Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/enzimologia , Acetil-CoA C-Acetiltransferase/genética , Acetil-CoA Carboxilase/genética , Adipócitos/metabolismo , Adulto , Feminino , Humanos , Gordura Intra-Abdominal/metabolismo , Masculino , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Pessoa de Meia-Idade , Antígenos de Histocompatibilidade Menor , Obesidade/metabolismo , Análise de Sequência de RNA , Redução de Peso/fisiologia
9.
Biochim Biophys Acta ; 1842(10): 1923-1931, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24905732

RESUMO

Increases in throughput and decreases in costs have facilitated large scale metabolomics studies, the simultaneous measurement of large numbers of biochemical components in biological samples. Initial large scale studies focused on biomarker discovery for disease or disease progression and helped to understand biochemical pathways underlying disease. The first population-based studies that combined metabolomics and genome wide association studies (mGWAS) have increased our understanding of the (genetic) regulation of biochemical conversions. Measurements of metabolites as intermediate phenotypes are a potentially very powerful approach to uncover how genetic variation affects disease susceptibility and progression. However, we still face many hurdles in the interpretation of mGWAS data. Due to the composite nature of many metabolites, single enzymes may affect the levels of multiple metabolites and, conversely, levels of single metabolites may be affected by multiple enzymes. Here, we will provide a global review of the current status of mGWAS. We will specifically discuss the application of prior biological knowledge present in databases to the interpretation of mGWAS results and discuss the potential of mathematical models. As the technology continuously improves to detect metabolites and to measure genetic variation, it is clear that comprehensive systems biology based approaches are required to further our insight in the association between genes, metabolites and disease. This article is part of a Special Issue entitled: From Genome to Function.

10.
BMC Genomics ; 14: 865, 2013 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-24320595

RESUMO

BACKGROUND: Genome-wide association studies (GWAS) have identified many common single nucleotide polymorphisms (SNPs) that associate with clinical phenotypes, but these SNPs usually explain just a small part of the heritability and have relatively modest effect sizes. In contrast, SNPs that associate with metabolite levels generally explain a higher percentage of the genetic variation and demonstrate larger effect sizes. Still, the discovery of SNPs associated with metabolite levels is challenging since testing all metabolites measured in typical metabolomics studies with all SNPs comes with a severe multiple testing penalty. We have developed an automated workflow approach that utilizes prior knowledge of biochemical pathways present in databases like KEGG and BioCyc to generate a smaller SNP set relevant to the metabolite. This paper explores the opportunities and challenges in the analysis of GWAS of metabolomic phenotypes and provides novel insights into the genetic basis of metabolic variation through the re-analysis of published GWAS datasets. RESULTS: Re-analysis of the published GWAS dataset from Illig et al. (Nature Genetics, 2010) using a pathway-based workflow (http://www.myexperiment.org/packs/319.html), confirmed previously identified hits and identified a new locus of human metabolic individuality, associating Aldehyde dehydrogenase family1 L1 (ALDH1L1) with serine/glycine ratios in blood. Replication in an independent GWAS dataset of phospholipids (Demirkan et al., PLoS Genetics, 2012) identified two novel loci supported by additional literature evidence: GPAM (Glycerol-3 phosphate acyltransferase) and CBS (Cystathionine beta-synthase). In addition, the workflow approach provided novel insight into the affected pathways and relevance of some of these gene-metabolite pairs in disease development and progression. CONCLUSIONS: We demonstrate the utility of automated exploitation of background knowledge present in pathway databases for the analysis of GWAS datasets of metabolomic phenotypes. We report novel loci and potential biochemical mechanisms that contribute to our understanding of the genetic basis of metabolic variation and its relationship to disease development and progression.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Processamento Eletrônico de Dados , Redes e Vias Metabólicas/genética , Metaboloma , Estudo de Associação Genômica Ampla , Humanos , Modelos Lineares , Polimorfismo de Nucleotídeo Único , Software , Fluxo de Trabalho
11.
BMC Syst Biol ; 4: 92, 2010 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-20587024

RESUMO

BACKGROUND: Quantitative models of biochemical and cellular systems are used to answer a variety of questions in the biological sciences. The number of published quantitative models is growing steadily thanks to increasing interest in the use of models as well as the development of improved software systems and the availability of better, cheaper computer hardware. To maximise the benefits of this growing body of models, the field needs centralised model repositories that will encourage, facilitate and promote model dissemination and reuse. Ideally, the models stored in these repositories should be extensively tested and encoded in community-supported and standardised formats. In addition, the models and their components should be cross-referenced with other resources in order to allow their unambiguous identification. DESCRIPTION: BioModels Database http://www.ebi.ac.uk/biomodels/ is aimed at addressing exactly these needs. It is a freely-accessible online resource for storing, viewing, retrieving, and analysing published, peer-reviewed quantitative models of biochemical and cellular systems. The structure and behaviour of each simulation model distributed by BioModels Database are thoroughly checked; in addition, model elements are annotated with terms from controlled vocabularies as well as linked to relevant data resources. Models can be examined online or downloaded in various formats. Reaction network diagrams generated from the models are also available in several formats. BioModels Database also provides features such as online simulation and the extraction of components from large scale models into smaller submodels. Finally, the system provides a range of web services that external software systems can use to access up-to-date data from the database. CONCLUSIONS: BioModels Database has become a recognised reference resource for systems biology. It is being used by the community in a variety of ways; for example, it is used to benchmark different simulation systems, and to study the clustering of models based upon their annotations. Model deposition to the database today is advised by several publishers of scientific journals. The models in BioModels Database are freely distributed and reusable; the underlying software infrastructure is also available from SourceForge https://sourceforge.net/projects/biomodels/ under the GNU General Public License.


Assuntos
Fenômenos Bioquímicos/fisiologia , Bases de Dados Factuais , Modelos Biológicos , Biologia de Sistemas/métodos , Internet , Cinética
12.
Nucleic Acids Res ; 34(Database issue): D689-91, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16381960

RESUMO

BioModels Database (http://www.ebi.ac.uk/biomodels/), part of the international initiative BioModels.net, provides access to published, peer-reviewed, quantitative models of biochemical and cellular systems. Each model is carefully curated to verify that it corresponds to the reference publication and gives the proper numerical results. Curators also annotate the components of the models with terms from controlled vocabularies and links to other relevant data resources. This allows the users to search accurately for the models they need. The models can currently be retrieved in the SBML format, and import/export facilities are being developed to extend the spectrum of formats supported by the resource.


Assuntos
Fenômenos Bioquímicos , Fenômenos Fisiológicos Celulares , Bases de Dados Factuais , Modelos Biológicos , Genes , Internet , Cinética , Interface Usuário-Computador , Vocabulário Controlado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...